Uninflatable and Notch Control the Targeting of Sara Endosomes during Asymmetric Division

نویسندگان

  • Sylvain Loubéry
  • Carole Seum
  • Ana Moraleda
  • Alicia Daeden
  • Maximilian Fürthauer
  • Marcos Gonzalez-Gaitan
چکیده

Cell fate decision during asymmetric division is mediated by the biased partition of cell fate determinants during mitosis [1-6]. In the case of the asymmetric division of the fly sensory organ precursor cells, directed Notch signaling from pIIb to the pIIa daughter endows pIIa with its distinct fate [1-6]. We have previously shown that Notch/Delta molecules internalized in the mother cell traffic through Sara endosomes and are directed to the pIIa daughter [6]. Here we show that the receptor Notch itself is required during the asymmetric targeting of the Sara endosomes to pIIa. Notch binds Uninflatable, and both traffic together through Sara endosomes, which is essential to direct asymmetric endosomes motility and Notch-dependent cell fate assignation. Our data uncover a part of the core machinery required for the asymmetric motility of a vesicular structure that is essential for the directed dispatch of Notch signaling molecules during asymmetric mitosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sara phosphorylation state controls the dispatch of endosomes from the central spindle during asymmetric division

During asymmetric division, fate assignation in daughter cells is mediated by the partition of determinants from the mother. In the fly sensory organ precursor cell, Notch signalling partitions into the pIIa daughter. Notch and its ligand Delta are endocytosed into Sara endosomes in the mother cell and they are first targeted to the central spindle, where they get distributed asymmetrically to ...

متن کامل

S07-04 Sara endosomes during asymmetric cell division

Recent studies have uncovered a key role of endocytosis during Notch signalling after the asymmetric division of the fly sensory organ precursor cells (SOP): directional signalling is mediated by differential endocytosis of the ligand Delta and the Notch effector Sanpodo in one of the SOP daughters, the pIIb. Here we show a novel mechanism of directional signalling based on the trafficking of D...

متن کامل

S07-05 Neural stem cell polarity and malignant growth in Drosophila

Recent studies have uncovered a key role of endocytosis during Notch signalling after the asymmetric division of the fly sensory organ precursor cells (SOP): directional signalling is mediated by differential endocytosis of the ligand Delta and the Notch effector Sanpodo in one of the SOP daughters, the pIIb. Here we show a novel mechanism of directional signalling based on the trafficking of D...

متن کامل

Numb regulates the balance between Notch recycling and late-endosome targeting in Drosophila neural progenitor cells

The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb r...

متن کامل

Dev104240 2014..2023

Tissue homeostasis is maintained by adult stem cells, which selfrenewand give rise to differentiating cells. The generation of daughter cells with different fates is mediated by signalling molecules coming from an external niche or being asymmetrically dispatched between the two daughters upon stem cell mitosis. In the adult Drosophila midgut, the intestinal stem cell (ISC) divides to generate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014